
Certification

Jun 19th, 2024 / v.0.2
Audited source code version:

618d3cfe71474adb7a2503fc291e130a8265c739

SMART CONTRACT AUDIT

SMART CONTRACT AUDITS

ITHEUM BRIDGE MULTIVERSX CONTRACT

Itheum Contract Audit

Some sections are more important than others. The most critical areas are at the top, and the less critical sections are at
the bottom. The issues in these sections have been fixed or addressed and will show by the "Resolved" or "Unresolved"
tags. Each case is written so you can understand how serious it is, with an explanation of whether it is a risk of exploita-
tion or unexpected behavior.

These issues can have a dangerous effect on the ability of the contract to work correctly.

These issues significantly affect the ability of the contract to work correctly.

These issues affect the ability of the contract to operate correctly but do not hinder its behavior.

These issues have a minimal impact on the contract's ability to operate.

These issues do not impact the contract's ability to operate.

CRITICAL

HIGH

MEDIUM

LOW

INFORMATIONAL

Structure and Organization of the Document

1

Itheum Contract Audit

Possible fix to research!

Use the existing events or implement new ones where it fits.

Description: There are events that are configured in ‘events.rs’ file but are unused (eg ‘setFeeValueEvent’). Also, there
are certain endpoints in ‘admin.rs’ that don’t have events at all (eg ‘addToWhitelist’).

2

Issues

Fixed / LOW1. Missing events

Fixed.

Response!

Accepted & Closed.

Status!

Not Addressed.

Status!

Possible fix to research!

When the relayer sends the tokens on the destination chain, supply the
deposit tx hash on the other chain as a parameter. This way it would be
more transparent, the ‘in’ and ‘out’ transactions will be linked directly
on the chain for everyone to see, and traceability will become much
easier.

Description: Right now, the code heavily relies on an off-chain component to do the settlement between mvx and sol
transactions and traceability is not the best. When an user wants to send tokens from mvx to sol, he would have, on the
mvx side, to supply the destination address and signature correspondent to its sol address when he does the ‘send_to_
liquidity’ action on the mvx contract, which is great. On the other hand, when the sol relayer calls ‘send_from_liqudity’
there is no link to the initial mvx transaction, and will most likely become at some point a problem of traceability.

Not Addressed / INFORMATIONAL2. Improve transparency

Itheum Contract Audit

Possible fix to research!

In case the fix for the first suggestion is implemented, the smart
contract could save the tx hash of the other chain in its storage and
later check future hashes against it. This check will help in preventing
cases like double spending caused by problems in the relayer (bugs,
desyncs, etc).

Description: There is no check in the smart contracts to see if a bridge transaction has already been made. There could
be cases where a relayer is running incorrectly (desynchronized and restarted) and it could miss some transactions (that
could be handled by sending the tokens later) and it could send tokens twice for the same bridged tx. While there’s no
way of ensuring everything on-chain and trust in the relayer is a must, there are some checks that can be done in order
to avoid those cases.

Not Addressed / INFORMATIONAL3. Avoid double spending

Not Addressed.

Status!

Possible fix to research!

Eliminate the unwrapping operation and send the fees as they are
received. Move the responsibility of unwrapping to the fees collector or
its administrator.

Description: It is a rule of thumb that the smart contracts should have minimal external dependencies because it
minimises the potential attack surface. This rule could be applied to the fee collection mechanism, meaning that the
swapping (unwrapping) intermediary step can be eliminated. This would greatly improve the transaction cost and will
eliminate redundancy (best to do one larger unwrap than a lot of smaller unwraps).

Fixed / INFORMATIONAL4. Remove non-priority operations and dependencies

Fixed.

Response!

Accepted & Closed.

Status!

3

Itheum Contract Audit 4

Possible fix to research!

Make the contract only accept one token (one token to be allowed to be
whitelisted) besides from the fee token and do the bridge on a 1:1 basis.
Plans of adding more tokens could be implemented later (by upgrading the
contract or deploying a new one).

Description: The mvx contract allows for multiple whitelisted tokens, while the sol version allows for just one. It might be
best to start with a 1:1 bridge. Building a bridge is a challenging task, from a security standpoint, the first version should
have the minimal required operations for the launch.

Fixed / INFORMATIONAL5. Desync with the sol version

Possible fix to research!

Remove the Add/Remove liquidity endpoints and rely strictly on the tokens
that are locked in the contract.

Description: This suggestion is tied with the one above, in case of choosing the path of a 1:1 bridge, there’s no need
for adding / removing liquidity aside for strictly the bridged transactions. In this case, the tokens that are locked in the
contract match exactly with the number of tokens minted on the sol side. There’s no need for additional operations.

Not Addressed / INFORMATIONAL6. Eliminate the Add/Remove liquidity

Fixed.

Response!

Accepted & Closed.

Status!

Not Addressed.

Status!

Itheum Contract Audit 5

Verification Conditions

Admin functions are marked accordingly 1

 only_privileged!(self, ERR_NOT_PRIVILEGED);

User actions are guarded by active state checks on the contract.2

 require_contract_ready!(self, ERR_CONTRACT_NOT_READY);
 require!(
 self.is_state_active(self.public_state().get()),
 ERR_CONTRACT_NOT_READY
);

Valid tokens are accepted (token id and amount are being checked)3

require!(
 self.tokens_whitelist().contains(&deposit.token_identifier),
 ERR_TOKEN_NOT_WHITELISTED
);
require!(
 self.check_amount(
 &deposit.amount,
 self.token_decimals(&deposit.token_identifier).get()),
 ERR_NOT_WHOLE_NUMBER
);
require!(
 self.minimum_deposit(&deposit.token_identifier).get() <= deposit.amount
 && deposit.amount <= self.maximum_deposit(&deposit.token_identifier).get(),
 ERR_PAYMENT_AMOUNT_NOT_IN_ACCEPTED_RANGE
);

Sending tokens from the contract to accounts can be done only by the relayer4

 require!(self.relayer().get() == caller, ERR_NOT_PRIVILEGED);

Itheum Contract Audit

Suggestions (Optional)
1. Simplify the logic and reduce the contract to its fundamentals (1:1 ITHEUM bridge, 1 token on each side, no
liquidity being added or removed besides from token TXes).

2. Run clippy on the code and solve warnings and suggesti (eg in ‘check_amount’ instead of the if statements and
the two returns, you can use simply ‘amount % &token_decimals == 0’)

6

Test results

Audited source code version
4af8a461b8d41e011dedfc6931d635e3e6d3f0c9

Second review source code version
618d3cfe71474adb7a2503fc291e130a8265c739

Response: Fixed.

Status: Accepted & Closed.

Response: Not Addressed.

Status: Accepted & Closed. (only Optional)

