
Certification

SMART CONTRACT AUDIT

 SMART CONTRACT AUDITS
Feb 23rd, 2024 / v.0.4

Audited source code version:
29d4e1ea31c226b75b4b61c5268880c39e91c8d8

XSTAKE CONTRACT

Some sections are more important than others. The most critical areas are at the top, and the less
critical sections are at the bottom. The issues in these sections have been fixed or addressed and
will show by the "Resolved" or "Unresolved" tags. Each case is written so you can understand how
serious it is, with an explanation of whether it is a risk of exploitation or unexpected behavior.

These issues can have a dangerous effect on the ability of the contract to work correctly.

These issues significantly affect the ability of the contract to work correctly.

These issues affect the ability of the contract to operate correctly but do not hinder its behavior.

These issues have a minimal impact on the contract's ability to operate.

These issues do not impact the contract's ability to operate.

CRITICAL

HIGH

MEDIUM

LOW

INFORMATIONAL

1

Structure and Organization of the Document

Possible fix to research!

The design of the reward calculation must be reconsidered, it is a dealbreaker,
the contract will not work this way. A common way (for example in MvX and Evm
ecosystems) to calculate the rewards in staking protocols is by holding an
‘accumulator’ value, RPS (‘rewardPerShare’).

Description: The contract generates a new checkpoint (for a specific 'stake_id') every time a
user calls 'stake' or 'unstake'. This could lead to the generation of a lot of checkpoints. This
is a problem because in order to calculate the 'reward' for a specific position, for example in
'claimRewards' endpoint, all the checkpoints for that specific 'stake_id' must be iterated. The
iteration could easily fail due to too much gas being utilised, or too many reads from the trie being
done. 'consolidateCheckpoints' is not enough to fix the problem because: 1, the iterations inside
'consolidateCheckpoints' can fail because of the same reasons, or 2, if a single user simply
does not claim the rewards or does not unstake, it will prevent the past checkpoints from being
cleared. There is no programmed limit to how much the checkpoint vector can grow and if it grows
too much, users will not be able to claim the rewards or to unstake their position, hence the tokens
will be locked inside the contract forever.

2

Issues

Not Applicable / CRITICAL1. Loss of funds

Response!

Not Applicable.

Status!

Accepted & Closed (not applicable anymore for code v.0.2, starting with this
version there is a new SC design using RPS accordingly with our suggestion)

Possible fix to research!

Add basic boundaries checks, like greater than 0 and maybe smaller than a
global maximum value.

Description: There are no boundaries checks for the values of staked ratios.

Not Applicable / MEDIUM2. Unchecked staked ratio

Possible fix to research!

Updating the framework can bring bug fixes and optimizations. It is generally
a good practice to use the latest version when deploying a new contract. The
testing framework version needs to be updated too, since a lot of functions that
are used in tests are marked as deprecated.

Description: The framework version that is used is '0.42.3' while the latest is '0.47.0'.

Not Applicable / LOW3. Framework Version

Response!

Not Applicable.

Response!

Not Applicable.

Status!

Accepted & Closed (not applicable anymore for code v.0.2, starting with this
version there is a new SC design using RPS accordingly with our suggestion)

Status!

Accepted & Closed (not applicable anymore for code v.0.2, starting with this
version there is a new SC design using RPS accordingly with our suggestion)

3

Possible fix to research!

Remove that part of the condition in the ‘require’ statements.

 Description: When staking and searching for the staking tokens against the payment tokens, the
comparison 'i == j' is redundant since 'j' starts having the value of 'i+1' and then incrementing.

Not Applicable / LOW5. Redundant checks

Possible fix to research!

Add a useful message so the user gets a good idea of the reason should the TX fail.

Description: When staking, there's a check that verifies the EGLD amount received against an
expected value, in case the check fails, the returned error message is empty.

Not Applicable / LOW4. Empty error message

Response!

Not Applicable.

Response!

Not Applicable.

Status!

Accepted & Closed (not applicable anymore for code v.0.2, starting with this
version there is a new SC design using RPS accordingly with our suggestion)

Status!

Accepted & Closed (not applicable anymore for code v.0.2, starting with this
version there is a new SC design using RPS accordingly with our suggestion)

Possible fix to research!

Add the claiming of rewards when total unstaking.

Possible fix to research!

Add a check for ‘elapsed_epochs > 0’ in the ‘if staked > 0’ statement.

Description: When total unstaking, meaning unstaking the whole staked position, users usually
expect the rewards also, in the same TX. Some users might forget that the rewards are still
unclaimed after the total unstake.

Description: The 'update_rps' function tries to update the RPS even if the 'elapsed_nonces' is
zero. This calculus happens when, for example, multiple users claim their rewards at the same
time (in the same block). The actual update of RPS will happen in the first TX and the following
calls will try to increment the RPS with 0.

Not Applicable / LOW6. Total unstake should claim rewards

Fixed / LOW7. Gas optimization

Response!

Not Applicable.

Response!

Fixed.

Status!

Accepted & Closed (not applicable anymore for code v.0.2, starting with this
version there is a new SC design using RPS accordingly with our suggestion)

Status!

Accepted & Closed.

4

Possible fix to research!

Remove the handling of ‘else’ branch in the last ‘if’ statement of the
function body.

Description: In 'claimRewards' endpoint, the stake of the user is checked and if the value is zero,
the rewards are sent and the storage is cleared. With the current design, the stake storage of the
user cannot contain values where the stake amount is zero, it is either zero or when it reaches
zero (upon unstake) it is cleared in place.

Fixed / LOW8. Redundant code

Response!

Fixed.

Status!

Accepted & Closed.

Verification Conditions

User actions are guarded by 'active state checks on the contract'.1

self.assert_active();

User stake action is guarded by 'active state checks of the stake'.2

self.assert_stake_active(stake_id);

Valid payments are checked on input.3

require!(found_tokens == payments.len(), ERROR_UNKNOWN_TOKEN);

Only the stake's owner can do configurations on the stake.4

self.assert_stake_owner(stake_id);

Only the service address can call 'consolidateCheckpoints'.5

require!(caller == self.service_address().get(), ERROR_NOT_AUTHORIZED);

5

Suggestions (Optional)
1. Token ordering. The contract has several places where payment tokens are searched against
staked tokens. An idea would be to implement ordering. For example, when creating a new stake and
configuring the staked tokens and the reward tokens, order them first alphabetically and store them in
the storage this way. When receiving a payment or when unstaking, order the payments or parameters
by token Id and this way, you can diminish the gas consumption by just knowing for example (when
staking) that 'payment[i].tokenId == stakedTokens[i].tokenId'. Code would be more clean, more
readable, gas cost would be lower and the complexity diminished.

2. Refactor. Use clippy to find warnings, for example, replace 'refunds.len() > 0' with
'!refunds.empty()'.

 Response: Fixed.

 Status: Accepted & Closed.

3. Rename 'view_user_stake' to 'user_stake' since it is confusing when trying to write to the storage
(eg. view_user_stake.set()). The name suggests it is read-only.

4. The tests have a lot of warnings, most of them due to the use of deprecated functions of the test
frameworks. Update the testing files and fix the warnings.

Test results

Audited source code version:
9c8d4c1760846dae5540b9798ae308d5efa75121

Second review code version:
29d4e1ea31c226b75b4b61c5268880c39e91c8d8

OneDEX Contract Audit

