
Certification

February 21st, 2023 / v.0.2
Audited source code version:

06896e309b74f3823315d433ff4904c824e51445

SMART CONTRACT AUDIT

SMART CONTRACT AUDITS

FARMS SMART CONTRACT

SuperRareBears Contract Audit

Some sections are more important than others. The most critical areas are at the top, and the less
critical sections are at the bottom. The issues in these sections have been fixed or addressed and
will show by the "Resolved" or "Unresolved" tags. Each case is written so you can understand how
serious it is, with an explanation of whether it is a risk of exploitation or unexpected behavior.

These issues can have a dangerous effect on the ability of the contract to work correctly.

These issues significantly affect the ability of the contract to work correctly.

These issues affect the ability of the contract to operate correctly but do not hinder its behavior.

These issues have a minimal impact on the contract's ability to operate.

These issues do not impact the contract's ability to operate.

CRITICAL

HIGH

MEDIUM

LOW

INFORMATIONAL

1

Structure and Organization of the Document

SuperRareBears Contract Audit

Possible fix to research!

Refactor the current Farm Contract to be in fact a Farm Contract Deployer, and
for each staking pool, it deploy a new contract instance that handles just
that. This way, both the Farm Deployer Contract and the new Farm Contract code
will be much simplified, by splitting the functionalities between two contracts.
Also in the explorer, it would be much easier for users to see how many tokens
each pool has, and the activity within it. For this, see ‘deploy_from_source’
function inside MultiversX Wasm Rust Framework.

Possible fix to research!

Make a suite of tests and emphasise on ‘harvest’ and ‘calcHarvestableRewards’
and fee calculations in general.

Description: There is the general rule of thumb that each liquidity pool (either a swap pool or a
staking pool or any other) must have its own smart contract instance. From a security perspective,
it is dangerous to have all the funds from multiple pools mixed into a single instance because
any problem that should arise might therefore affect all the funds and by extension all the users.
Problems that might arise include: misconfigurations, bugs that include corner cases, security
vulnerabilities.

Description: No tests were found.It is highly important for a smart contract that includes
calculations (fees, rewards, shares) to be covered by at least a basic test suite. Those parts of the
code that do the calculations are mandatory to be tested.

2

Unresolved / MEDIUM2. Lack of testing

Unresolved / MEDIUM1. Mixing of funds

Issues

Status!

Not addressed.

Status!

Not addressed.

SuperRareBears Contract Audit 3

Possible fix to research!

Go through all the cases where a transfer is made and add checks against zero
before doing the call, or try adding checks that will enforce that such cases
never happen. For example setting the ‘creator_charge’ with at least value 1.

Description: There are cases in the contract where the 'send().direc()' function is called but
there's no check against the amount that will be transferred. For example, when the
'creator_charge' is set to 1, the 'earning' for both 'Kostas' and 'Eldar' will be zero.

Fixed / LOW4. Sending zero value

Possible fix to research!

Make the unstake function also claim the rewards, especially when fully
unstaking. This way, any action a user makes, will not result in him losing any
rewards he might have earned.

Description: In MultiversX ecosystem, users usually expect that the unstaking everything action
also claims the rewards that the staking position currently has. The problem should be addressed
since not all the users read documentation or simply do not pay attention.

Fixed / MEDIUM3. Unstaking does not claim rewards

Status!

Claiming of rewards was introduced for full unstake scenario.

Status!

Accepted & Closed.

SuperRareBears Contract Audit

Possible fix to research!

Add return values to endpoints.

Possible fix to research!

Revisit all error messages and fix the misspellings.

Description: It's important for endpoints to return values in some cases, for example in the case
anyone wants to call the smart contract using another smart contract. If anyone does that and
calls 'harvest', he wouldn't easily know how many rewards he actually got. Another example is for
'createFarm', one needs to know the 'farm_id' associated with the farm in order to further interact
with it.

Description: Error messages contain typos. For example, search for 'Wrond'.

Fixed / INFORMATIONAL6. Missing return values

Fixed / INFORMATIONAL7. Typos

Status!

Not addressed.

Status!

Accepted & Closed.

Status!

Accepted & Closed.

Possible fix to research!

Similar to how ‘TOTAL_PERCENT’ was made a constant and used throughout the
code, refactor the same for Pool Id 7 and the creator labels.

Description: The code contains a handful of hardcoded values that might not be intuitive and might
be the source of errors in the future.

Unresolved / LOW5. Hardcoded values

4

SuperRareBears Contract Audit 5

Verification Conditions

Owner functions are marked using either 'only_for_owners' at the beginning
of the function body

1

self.only_for_owners();

The fee percent values are set within expected bounds3

require!(early_unbonding_fee < TOTAL_PERCENT, “Wrong percentage. Fee must be
 below or equal to 10000 (=100%).”);
require!(rewards_fee < TOTAL_PERCENT, “Wrong percentage. Fee must be below or
 equal to 10000 (=100%).”);

The token type is verified against the expected one when staking into a farm 2

require!(farm.staked_token == token, “Wrond token staked for this farm.”);

SuperRareBears Contract Audit 6

1. Write unit tests using Rust Testing Framework, so you can have the possibility of calling
functions with dynamic values and test corner cases.

2. Use 'cargo fmt' to format the code.

3. Try splitting longer functions into many smaller functions.

4. Refactor hardcoded values.

5. Write interaction scripts. Use 'mxpy' to automate transaction construction.

6. Improve the 'README.md' by giving each public function a small description. A small
description of the contract as a whole and a description of each fee would also be useful.

7. Use 'init' to make some of the initial configuration needed to 'becomeCreator' and
'createFarm'.

8. Pay attention to the destination shard when deploying the contract. It needs to be in the
same shard with XOXNO contract.

Suggestions (Optional)

Status: Not addressed.

Status: Not addressed.

Status: Not addressed.

Status: Not addressed.

Status: Accepted & Closed.

Status: Not addressed.

Status: Accepted & Closed.

SuperRareBears Contract Audit 7

Test results

Initial audited source code version
9cf75d2b0deafdb0bbd47cc172f5aad5fc0d20ac

* The audited source code version is the latest commit hash on the source code repo of SRB
Farms SC.

Second version of audited source code
06896e309b74f3823315d433ff4904c824e51445

* This audited source code version is the latest commit hash of the shared repo

