
Certification

Mar 16th, 2024 / v.0.2
Audited source code version:

1d54b371cd4b3f0a34d65bd38682f9350f859062

SMART CONTRACT AUDIT

SMART CONTRACT AUDITS

DECENTRALIZED LEVERAGE TRADING CONTRACT

X-Leverage Contract Audit

Some sections are more important than others. The most critical areas are at the top, and the less critical sections are at
the bottom. The issues in these sections have been fixed or addressed and will show by the "Resolved" or "Unresolved"
tags. Each case is written so you can understand how serious it is, with an explanation of whether it is a risk of exploita-
tion or unexpected behavior.

These issues can have a dangerous effect on the ability of the contract to work correctly.

These issues significantly affect the ability of the contract to work correctly.

These issues affect the ability of the contract to operate correctly but do not hinder its behavior.

These issues have a minimal impact on the contract's ability to operate.

These issues do not impact the contract's ability to operate.

CRITICAL

HIGH

MEDIUM

LOW

INFORMATIONAL

Structure and Organization of the Document

1

X-Leverage Contract Audit

Possible fix to research!

Keep the collateral in the contract. For a 2:1 leverage position, a
borrower should get 2 tokens available for trading, backed by a 1 token
collateral. In the current implementation, he borrows 2 and also uses the
one he deposited in the trade, essentially leading to a 3 tokens trade
position. For a 1:1 position, there should be essentially no tokens being
borrowed.

Description: The collateral is used in trade. This can, in multiple scenarios, lead to loss of funds for lenders, because
their loan is not backed by anything. For example, if a stablecoin is borrowed to be traded for a regular coin and the
coin value drops fast, the lenders will lose money (if the liquidation happens too late). It is expected, the lending is not
guaranteed to be profitable, but lenders must be compensated for their loss at least with the value of the collateral
initially deposited by the borrower. In the current implementation, the lender can lose all his lended tokens.

2

Issues

Fixed / CRITICAL1. Loss of funds

Fixed.

Response!

Accepted & Closed.

Status!

X-Leverage Contract Audit 3

Possible fix to research!

Don’t use the platform funds to account for the user losses. A losing
position that is not liquidated at the right time might result in losses
for the lender too. It can happen in leverage trading. Due to malicious
players placing both lending and borrowing offers (either from the same
address or from different one), compensating lenders might be dangerous.
It’s better to enforce the means not to get into that situation (by,
for example, not using the borrower’s collateral in the trade, having
different liquidation thresholds for different pairs, using safe prices
instead of spot ones, and so on).

The platform profit is used to account for the lenders eventual losses. In case a trade is not successful, any losses that
a lender might be exposed to (the initial amount deposited and the lending fees) are being assured by the platform.
While the intention is noble, this model is not economically feasible. There is nothing that stops a malicious player from
creating multiple lending and borrowing offers (even from the same address - there’s no check that disallows one to do
it) high maximum fees, match them into borrowing positions and drive them into being unsuccessful (by manipulating the
liquidity pools for example). When closing, potentially huge lending fees (from pre configured maximum fee percents)
might be extracted by the malicious player.

Fixed / CRITICAL2. Funds draining

Fixed.

Response!

Accepted & Closed.

Status!

X-Leverage Contract Audit

Possible fix to research!

Introduce a mechanism that minimises losses (e.g.: an automatic
liquidation mechanism). The current implementation is dependent on the
owner to save the situation by adding more funds that the contract will
use to compensate the lenders.

Description: The contract panics if there are not enough funds to cover for the lenders (initial amount and fees), hence a
borrower might not be able to close his position in order to minimise a supposed not successful trade which can lead to
even more losses for him and the lenders.

4

Fixed / HIGH4. Unable to close position

Possible fix to research!

Use a safe price instead of the current price or add certain slippages or
barriers such that it protects the parties involved in a trade.

Description: The contract is vulnerable to flash loans. There’s no checks when a trade is made, the contract reads the
current price on a DEX and executes the trade at that current price. A malicious player can intercept such calls and
sandwich attack them by making a flash loan. In the same block as the trade, it can manipulate the price before and
after the trade, resulting in loss of money for lenders and borrowers.

Fixed / CRITICAL3. Vulnerable to flash loans

Fixed.

Response!

Fixed.

Response!

Accepted & Closed.

Status!

Accepted & Closed.

Status!

X-Leverage Contract Audit

Possible fix to research!

If max duration is surpassed, any lender that participates in the trade
should be able to close the position even if the trade has not yet been
done.

Description: The endpoint’s name, ‘closeOffer’, is quite misleading, it should essentially be
‘closeUnopenedBorrowPosition’, since is callable only the by borrower and the SC owner and it closes a Borrower
Position (alongside with the adjent Lender Positions, Debt Positions). The lender in this case has no power in closing
the order if the max duration is surpassed. If the contract owner will not monitor, observe and close the order, the
borrower can keep the funds locked for as long as he wants.

Fixed / HIGH5. Blocked lender funds

Fixed.

Response!

Expected, we will allow the contract owner to close trades in case of
emergencies.

Response!

Accepted & Closed.

Status!

Accepted & Closed.

Status!

5

Possible fix to research!

Mark the trade as closed and save the block nonce such that even if a
trade cannot be closed, in case for example a maintenance is being done,
the borrower won’t have to pay lender fees for the whole pause duration.

Description: The contract is pausable. During the pause, offers cannot be made, trades cannot be opened. The problem
is that the trades cannot be closed too, and the lender fees accumulate. Traders that want to close their position during
this time cannot do it and when the pause is over and he closes his trade (assuming can & wants to close it) will be
paying fees for the whole duration of the trade.

Not applicable / HIGH6. Blocked trades

X-Leverage Contract Audit

Possible fix to research!

The quick fix is to add pagination to the functions, ‘offset’ and ‘limit’
arguments, in order to have access to all offers, not just the ones in
the front of the queue. A complete fix should include an atomic way to
get them, such an implementation might be possible by getting all the
contract storage (key-value json) and manually parsing, although the
solution might require testing and validation for huge amounts of offers.

Description: When querying ‘getLendingOffers’ and ‘getBorrowingOffers’, the execution can easily run out of gas /
read operations. This can be problematic when trying to sync the SC storage with a backend offer matcher or liquidator
engine.

6

Fixed / HIGH8. Out of gas / read operations

Possible fix to research!

Deny opening of positions if they are already expired.

Description: A Borrower Position can be opened even if the ‘end_block_nonce’ crossmark has passed. Lenders can
opt to close or liquidate the Position immediately after but at that point damage could have already been done (opening
the position involves making the trade / ‘swap’).

Fixed / HIGH7. Expired positions

Fixed.

Response!

Fixed.

Response!

Accepted & Closed.

Status!

Accepted & Closed.

Status!

X-Leverage Contract Audit 7

Possible fix to research!

 Add a check to see if the position is expired.

Possible fix to research!

Use it in ‘closeOffer’ or delete it.

Description: There’s no check to verify if a position is expired when trying to add collateral to it.

Description: The ‘require_can_remove_borrowing_offer’ internal function is unused.

Not applicable / MEDIUM9. Adding collateral to expired position

Fixed / LOW10. Unused function

As designed, the lender can always close the position if he wants when
the position is expired.

Response!

Accepted & Closed.

Status!

Fixed.

Response!

Accepted & Closed.

Status!

X-Leverage Contract Audit

Possible fix to research!

Rename it to ‘getPlatformFeePercent’.

Description: The view function name above the ‘platform_fee_percent’ is ‘getSlippagePercent’.

Fixed / LOW12. Typo

Possible fix to research!

Find the warnings using ‘cargo clippy’ and fix them.

Description: There are a few places where double reference warnings happen and a few others, for example in the
‘create_borrowing_offer’ function.

Fixed / LOW11. Clippy warnings

Fixed.

Response!

Fixed.

Response!

Accepted & Closed.

Status!

Accepted & Closed.

Status!

8

X-Leverage Contract Audit

Possible fix to research!

Even if the general reason is the same, try including more details about
the particular error spot, for example ‘Can not close the position at
this time, cannot pay lender fees’.

Description: There are certain places where the same error message is returned in case a tx fails, for example ‘Can not
close the position at this time’.

Fixed / LOW14. Confusing error messages

9

Possible fix to research!

Allow fees only in [0, max_value] but also make a check that they are
more round values (‘value % DENUM == 0). Might also be a good idea to
require the value coming out of the weighted average calculus to be this
way, although it should be tested and tried.

Description: The functions ‘calculate_weighted_average’ and ‘calculate_weighted_average_substract’ round
down the calculated value. Allowing for any value in between [0, max_value] might be a problem when matching offers
configured fee values.

Fixed / LOW13. Correctness when rounding

Fixed.

Response!

Fixed.

Response!

Accepted & Closed.

Status!

Accepted & Closed.

Status!

X-Leverage Contract Audit 10

Verification Conditions

Admin functions are marked using ‘#[only_owner]’1

 #[only_owner]
 #[endpoint(setPlatformFeePercent)]
 fn set_platform_fee_percent(&self, fee: u32) {

Only whitelisted tokens and pairs are allowed2

 require!(
 !self.traded_tokens(caller).contains(&token),
 “You already have a trade position open for the token”
);
 require!(
 !self.traded_tokens(caller).contains(&token_out),
 “You already have a trade position open for the token out”
);

Removing offers can be done by either the offer owner or the admin3

 require!(
 is_contract_owner || is_offer_owner,
 “Only offer owner can remove offer”
);

One cannot hold multiple trades open for the same token4

 require!(
 self.trade_position(&caller, &token).is_empty(),
 “Can not borrow more assets for a token while a trade
 position is open”
);

X-Leverage Contract Audit

Suggestions (Optional)
1. Use Framework versions
Description: Use latest Framework Version and Testing Framework Version when deploying the mainnet project.

2. Structures good practices
Description: It is a good idea to include the ‘id’ in the structure identified by an ‘id’. Also, store timestamps such as creation,
last update and so on. Also, do not delete the offers or positions once they expire or are removed or already used. Mark them
using a flag. Those suggestions will make any debugging / reverse engineering of any situation more straightforward.

3. Implement default functions
Description: Implement ‘default()’ functions for ‘LenderPosition’ and ‘BorrowerPosition’ and use them in ‘add_lender_
position’ and ‘add_borrowing_position’ to make the code more readable and clean.

4. Additional Checks
Description: When adding a new pair address, several checks can be made in order to make sure that the introduced
arguments are correct. For example, the endpoint can call that contract and validate that it indeed handles the given input
tokens.

5. Offer Incentives for Liquidators
Description: There’s no prize for someone that helps the lenders by liquidating someone’s borrow position. Would be more
healthy for the project if the good actors are rewarded somehow.

6. Max duration can be 0
Description: The max duration parameter passed by a user when creating a new offer can be 0 (the value is checked only
for the max value allowed). Although it does not seem to be a problem, it does not make that much sense to allow for 0 value
because the position can be closed soon after its creation (after only one block).

7. Views naming
Description: Use camel case for all public endpoints and views. There are storages that have only ‘#[view]’ on top of them,
without a given name, and the name will be the name of the storage (snake case).

8. Mismatch in fees
Description: The code requires that the lending and borrowing offers have the same fee percentages to match them.
Theoretically, the case where the lending fees are lower than the borrowing fee (meaning that the borrower is willing to pay
even more than the lender wants) should be considered also (although it might introduce additional complexity)

11

Response: Fixed.

Status: Accepted & Closed.

Response: Fixed.

Status: Accepted & Closed.

Response: Fixed.

Status: Accepted & Closed.

X-Leverage Contract Audit

Test results

Audited source code version:
546d0ae60cc419ec66521f892456b0a5e6d01359

Second source code version:
1d54b371cd4b3f0a34d65bd38682f9350f859062

12

