
Certification

March 22nd, 2023 / v.0.2
Audited source code version:

e4b49a864bd4ee3872cb7ea0ace2c2a6ef62222a

SMART CONTRACT AUDIT

SMART CONTRACT AUDITS

STAKING CONTRACT

BLOK Contract Audit

Some sections are more important than others. The most critical areas are at the top, and the less
critical sections are at the bottom. The issues in these sections have been fixed or addressed and
will show by the "Resolved" or "Unresolved" tags. Each case is written so you can understand how
serious it is, with an explanation of whether it is a risk of exploitation or unexpected behavior.

These issues can have a dangerous effect on the ability of the contract to work correctly.

These issues significantly affect the ability of the contract to work correctly.

These issues affect the ability of the contract to operate correctly but do not hinder its behavior.

These issues have a minimal impact on the contract's ability to operate.

These issues do not impact the contract's ability to operate.

CRITICAL

HIGH

MEDIUM

LOW

INFORMATIONAL

1

Structure and Organization of the Document

BLOK Contract Audit

Possible fix to research!

Make the function accept ‘reward_token’ instead of ‘staking_token’.

Description: 'refillRewardFund' function takes as input 'staking_token_identifier' instead of
'reward_token_identifier'. Imagine the scenario where the 'staking_token' differs from the
'reward_token'. In this scenario, the tokens deposited by the owner would be lost forever. Also,
the users would not be able to receive their rewards for staking their tokens.

2

Fixed / HIGH1. Loss of funds

Issues

Response!

Fixed.

Response!

Fixed.

Status!

Accepted & Closed.

Status!

Accepted & Closed.

Possible fix to research!

Make an ‘only_owner’ function that does something with those tokens (eg.
withdraws them).

Description: The penalty fees for unstaking too early are forever locked in the contract. Namely the
'recovered_penalty_amount' storage is just increased in 'unstake_common' and never used
afterwards.

Fixed / HIGH2. Loss of funds

BLOK Contract Audit

Possible fix to research!

Move the call to ‘require_staking_is_configured’ function at the top of the
function.

Description: 'calculate_reward_per_token' works if the 'total_supply' is zero, even if the
contract is not configured.

Fixed / MEDIUM4. Misscheck of configuration

Possible fix to research!

Add a check in ‘require_staking_is_configured’ and make sure ‘reward_per_block’
is greater than zero.

Description: 'require_staking_is_configured' function does not check if the 'reward_per_block'
is different from zero, as expected in other functions such as 'setRewardsPerBlock'.

Fixed / HIGH3. Misscheck of configuration

Response!

Fixed.

Response!

Fixed.

Status!

Accepted & Closed.

Status!

Accepted & Closed.

3

BLOK Contract Audit 4

Possible fix to research!

Change the comparison operator from ‘>’ to ‘>=’ between the ‘reward_fund’ and
‘reward_amount’

Possible fix to research!

In the ‘init’ function, add a check for a minimal value of ‘precision’. Right
now, even the zero value is accepted (which makes ‘division_safety_constant’
equal to 1 and hence redundant).

Description: 'claim_rewards_for_user' and 'stake_rewards' check if the 'reward_fund' is strictly
greater than the reward one user might be eligible. If the two are equal, the rewards are not given
to the user.

Description: The logic misbehaves if the 'division_safety_constant' has low values. This can
happen if the 'precision' argument has low values.

Fixed / MEDIUM5. Rewards are not distributed

Fixed / MEDIUM6. Unchecked precision

Response!

Fixed.

Response!

Fixed.

Status!

Accepted & Closed.

Status!

Accepted & Closed.

BLOK Contract Audit

Possible fix to research!

Add a check for ‘amount_for_user’. Do the transfer only if the value is greater
than zero.

Description: 'unstake_common' misses a check for zero value when sending back the staked
value after penalty, namely the 'amount_for_user'. The maximum allowed penalty fee is 100% of
the staking position. In case this is configured and a user still wants to unstake for some reason,
he wouldn't be able to.

Fixed / MEDIUM7. Unstaking with maximum penalty fails

Response!

Fixed.

Response!

Fixed.

Status!

Accepted & Closed.

Status!

Accepted & Closed (Boundaries have been set on initialization).

Possible fix to research!

Make an ‘only_owner’ function that can set the value.

Description: Once set, the 'division_safety_constant' cannot be changed afterwards. Even
though it is of low probability, it may be useful to change it (may need in case 'reward_per_token'
grows much).

Fixed / LOW8. Unchangeable precision

5

BLOK Contract Audit 6

Possible fix to research!

Refactor functions to remove redundant multiple reads and write-then-reads.

Description: There are a few flows where the current block is read multiple times. Additionally,
there are a few flows where user rewards are written to the storage and then read afterwards.
These operations cost gas, and just by refactoring the code by passing those values from function
to function using parameters or a more generic cache, execution time can be improved and gas
cost can be reduced.

Fixed / LOW10. Gas optimization

Possible fix to research!

Use ‘clear()’. It does the same thing without the need of a new instance of
‘BigUint’.

Description: 'stake_rewards' and 'claim_rewards_for_user' functions have reset the 'reward_
per_user' storage for a user. Both use 'set(BigUint::zero())' which means creating a new
instance of 'BigUint' and attempting to write it to the storage.

Fixed / LOW9. Gas optimization

Response!

Fixed.

Response!

Fixed.

Status!

Accepted & Closed.

Status!

Accepted & Closed.

BLOK Contract Audit 7

Possible fix to research!

In order to be consistent, make all of them either snake case or camel case.

Description: 'stakedAddresses' and 'stakingPosition' storage mappers have camel case format
and the rest have snake case format.

Fixed / INFORMATIONAL12. Storage layout differs in format

Possible fix to research!

When doing comparisons, put the value of type ‘BigUint’ in the left side. This
way the compiler would allow the ‘0u64’ to be on the right side, without the
need of a new ‘BigUint’ instance

Description: Avoid instantiation of 'BigUint::zero()' when doing comparisons.

Fixed / LOW11. Gas optimization

Response!

Fixed.

Response!

Fixed.

Status!

Accepted & Closed.

Status!

Accepted & Closed.

BLOK Contract Audit

Possible fix to research!

Remove the hardcoded value by using a constant. It gives it a name and more
meaning. Also, changing it later will persist everywhere in the code.

Description: The '1e18' value is used in 'calculate_reward_per_token' and 'calculate_rewards'
and it might not be intuitive what it represents.

Fixed / INFORMATIONAL13. Remove hardcoded values

Response!

Fixed.

Status!

Accepted & Closed.

8

BLOK Contract Audit 9

Verification Conditions

'penalty_percentage' boundaries are checked when attempting to set them.4

 require!(
 PENALTY_MAX_PERCENTAGE >= penalty_percentage,
 “Percentage must be between 0 and 10000”
);

'stake_common' does the appropriate checks on token id and amount.2

Contract configuration endpoints have only_owner annotation.3

'stake_through_proxy' and 'unstake_through_proxy' require whitelisting1

 let caller = self.blockchain().get_caller();
 self.known_staking_proxy_contracts()
 .require_whitelisted(&caller);

BLOK Contract Audit 10

1. Rename 'unwhitelistStakingProxyContract' to 'removeWhitelistStakingProxyContract' or
similar.

2. When adding or subtracting 'BigUints' from each other, try using references rather than the
values directly, because they move the value and usually require 'clone()' calls.

3. Update the MultiversX Rust Framework version.

4. Write tests using Rust Testing Framework instead of Mandos json files.

5. Add tests for the scenario where the reward token is different from the staking token.

6. Re-make the test 'configure-refill-reward-fund-failed-invalid-token-payment.scen'.

7. Refactor the 'unstake_common' function. It was 72 lines and lots of 'if' statements.

Suggestions (Optional)

Response: Not addressed.

Status: Accepted & Closed (Informational).

Response: Not addressed.

Status: Accepted & Closed (Informational).

Response: Not addressed.

Status: Closed.

Response: Not addressed.

Status: Closed.

Response: Fixed.

Status: Accepted & Closed.

Response: Fixed.

Status: Accepted & Closed.

Response: Fixed.

Status: Accepted & Closed.

BLOK Contract Audit

8. Add a way of stopping and starting to generate the rewards. Might be useful in emergency
cases.

9. Do not use intermediary storage mapper objects. When in need to call 'is_empty' or 'get()' or
'set()', invoke the mapper inline.

10. In the 'unwhitelist_staking_proxy_contract' function, use the 'require_whitelisted' method
of 'WhitelistMapper'.

Response: Fixed.

Status: Accepted & Closed.

Response: Fixed.

Status: Accepted & Closed.

Response: Not addressed.

Status: Accepted & Closed (Informational).

11

BLOK Contract Audit 12

Test results

BLOK Contract Audit

After second review:

13

BLOK Contract Audit

Audited source code version
387649fa04af6bf2be6a53c5d14ed005a3402c64

Second audited source code version
e4b49a864bd4ee3872cb7ea0ace2c2a6ef62222a

*This audited source code version is the latest commit hash of the shared repo.

14

