
Certification

October 14th, 2022 / v. 0.2
Source code version: be97236bcd0346014eec5ea51b2d09141f066b3a

SMART CONTRACT AUDIT

SMART CONTRACT AUDITS

STAKING CONTRACT

https://github.com/S4F-IT/elrond-smart-contracts/commit/be97236bcd0346014eec5ea51b2d09141f066b3a

 Sense4FIT Contract Audit

Some sections are more important than others. The most critical areas are at the top, and the less
critical sections are at the bottom. The issues in these sections have been fixed or addressed and
will show by the "Resolved" or "Unresolved" tags. Each case is written so you can understand how
serious it is, with an explanation of whether it is a risk of exploitation or unexpected behavior.

These issues can have a dangerous effect on the ability of the contract to work correctly.

These issues significantly affect the ability of the contract to work correctly.

These issues affect the ability of the contract to operate correctly but do not hinder its behavior.

These issues have a minimal impact on the contract's ability to operate.

These issues do not impact the contract's ability to operate.

CRITICAL

HIGH

MEDIUM

LOW

INFORMATIONAL

1

Structure and Organization of the Document

 Sense4FIT Contract Audit

Possible fix to research!

Keep users’ funds separate from the rewards (in the same contract but different
counters). Avoid relying on balance, because it has a mixed group of funds
(initial user stake and the rewards).

Response!

Not addressed. Since the whole contract relies that the owner knows what he is
doing and he will send all the tokens at the right time.

Response!

Not addressed. It is intended that total_tokens_staked keeps track of all
tokens that were ever staked, regardless if they were unstaked or not.

Status!

Accepted & Closed. Pay great attention when adding new packages and handling
reward tokens.

Status!

Accepted & Closed. Keep in mind that if the contract is ever made public,
integrators may misunderstand the meaning of this storage, better document it well.

Possible fix to research!

At the end of the unstake function, add an update() call on the storage and
decrease total_tokens_staked by staker_info.tokens_staked

Description: Let's imagine the following scenario: Two users stake 100 tokens. The APR is 100%.
After the locking duration the owner does not want to (or he might not be able to) fund the contract
with the necessary rewards. In this case, the first that will unstake the rewards will get his tokens
back and also the reward. The reward in this case will be the second user's initial stake. The
second user will lose his initial tokens and the promised reward.

Description: When someone unstakes, the total_tokens_staked global counter is not decreased.

2

Not addressed / HIGH2. Update total_tokens_staked when unstake

Not addressed / CRITICAL1. Loss of funds

Issues

 Sense4FIT Contract Audit

Possible fix to research!

At the end of the unstake() function, add an update() call on the storage and
decrease the total_staked_amunt by staker_info.tokens_staked

Possible fix to research!

Add a check for this when a package is created.

Description: When someone unstakes, the total_staked_amunt counter behind each package is
not decreased.

Not addressed / HIGH3. Update total_staked_amunt when unstake

Description: If the value is set to higher than 365, the contract misbehaves, and the problem will
result in a division by zero in compute_rewards_per_cycle() function.

Fixed / LOW4. Check reward_frequency to be less than 365

Response!

Not addressed. It is intended that total_staked_amunt keeps track of all
tokens that were ever staked on this package, regardless if they were unstaked
or not.

Status!

Accepted & Closed. Keep in mind that if the contract is ever made public,
integrators may misunderstand the meaning of this storage, better document it well.

Response!

Fixed.

Status!

Accepted & Closed.

 Sense4FIT Contract Audit 3

Possible fix to research!

Add an only_owner function that can remove packages that have zero total_
staked_amunt

Description: If a package is misconfigured, it cannot be deleted or overwritten, and will not be able
to reuse the package_name.

Not addressed / LOW5. Missing RemovePackage function

Response!

Not addressed. Won’t be needed since there are just a handful of 3-4 packages.

Response!

Not addressed. The JS script that uses this file takes into account the
decimals to and adds them.

Status!

Accepted & Closed.

Status!

Accepted & Closed.

Possible fix to research!

Update the numbers or, when using the numbers in a TX, don’t forget to also add
the decimals.

Description: The token amounts that are present in package.txt do not include the decimals.

Unresolved / INFORMATIONAL6. Package.txt misconfiguration

 Sense4FIT Contract Audit

Possible fix to research!

When calling reinvestRewardsToExistingStake(), check if the contract also has
enough tokens before allowing that.

Description: The contract allows users to reinvest the claimable rewards without actually having
the tokens.

Not resolved / HIGH8. Can reinvest without the SC having the tokens

Possible fix to research!

Add an update() call on the storage and increase the total_staked_amunt by
claimable_rewards

Description: When someone reinvest, the total_staked_amunt counter behind every package
should be increased.

Not addressed / HIGH7. Update total_staked_amunt when reinvest

Response!

Not addressed. It is intended that the total_staked_amunt keeps track of
the tokens that the user originally invested, and not the ones that comes from
the rewards.

Response!

Not addressed. It is intended. When reinvesting, the reinvested amount
comes from rewards and rewards generally do not have to be present in the contract
until the end of the staking period.

Status!

Accepted & Closed.

Status!

Accepted & Closed.

 Sense4FIT Contract Audit 4

Possible fix to research!

Add a zero value check to the lock_period parameter on add_package() function.

Description: The contract misbehaves when configured with lock_period value as 0.

Fixed / LOW9. Check lock_period value

Verification Conditions

Integrity of User's Payment on Stake1

let (payment_amount, payment_token) = self.call_value().payment_token_pair();
require!(
 payment_token == self.token_identifier().get(),
 “invalid staked token”
);
require!(
 payment_amount >= package_info.min_stake_amount,
 “stake amount too small”
);

Unstake period bound3

let locked_until = staker_info.stake_timestamp + package_info.lock_period * 86400;
require!(
 self.blockchain().get_block_timestamp() > locked_until,
 “tokens are under locking period”
);

Ownership of Staked Tokens2

let staker_ids = self.staker_ids(&caller).get();
require!(staker_ids.contains(&id), “id is not defined for the staker”);

Response!

Fixed.

Status!

Accepted & Closed.

 Sense4FIT Contract Audit 5

1. Allow APR to be in the range of (0, 100_000] instead of (0, 100] for more flexibility

 Response: Done.

 Status: Accepted & Closed.

2. Do not iterate to get an index (.iter().position()). Try using SetMapper instead

 Response: Not addressed because of time trouble.

 Status: Accepted & Closed.

3. Rather than calculating it everytime, put locked_until in the StakerInfo struct

 Response: Done.

 Status: Accepted & Closed.

4. Remove hardcoded values and have constants instead, eg. SECONDS_IN_DAY

 Response: Done.

 Status: Accepted & Closed.

5. Solve clippy warnings

 Response: Done.

 Status: Accepted & Closed.

6. Remove set_if_empty with default (0 like). It's already the default

 Response: Not addressed. For better visibility, the set_if_empty calls
 shall stay.

 Status: Accepted & Closed.

7. Use MapMapper for packageInfo because it's iterable

 Response: Not addressed. Not needed since there will be only a handful of
 packages.

 Status: Accepted & Closed.

Suggestions (Optional)

 Sense4FIT Contract Audit

8. Keep the rewards inside a separate storage

 Response: Not addressed because of time trouble.

 Status: Accepted & Closed.

9. Make the contract non-payable

 Response: Not addressed because of time trouble.

 Status: Accepted & Closed.

10. Make enum for PausedRewards eg. NotPaused, Paused{Timestamp}

 Response: Changed such that paused_stake is just a bool.

 Status: Accepted & Closed.

11. Make a forceUnstake function that does not also give rewards. It is good for emergency cases
when the contract is not filled with tokens but an user urgently needs his staked tokens

 Response: Not addressed. Defeats the purpose of the locking.

 Status: Accepted & Closed.

12. Add events to endpoints

 Response: Done.

 Status: Accepted & Closed.

13. Convert existing test from Mandos to RustTestingFramework and add new automatic tests to
improve coverage

 Response: Not addressed due to time trouble.

 Status: Accepted & Closed.

14. Remove ManagedVec::new(). When reading a ManagedVec from an empty storage, it'll give
you a new and empty one.

 Response: Done.

 Status: Accepted & Closed.

6

 Sense4FIT Contract Audit

15. The best practice is to always to the storage updates and then to do the transfers

 Response: Done.

 Status: Accepted & Closed.

16. Update framework version. Some of the function signatures have changed since the used
version

 Response: Not addressed due to time trouble.

 Status: Accepted & Closed.

17. Fix typo total_staked_amunt -> total_staked_amount

 Response: Done.

 Status: Accepted & Closed.

18. Do not use the word invest in smart contracts, just to be sure that there's no possible legal
problems. Instead, use compound

 Response: Done.

 Status: Accepted & Closed.

19. It'll be good to have also a check for lock_period % rewards_frequency == 0 when adding a
new package

 Response: Done.

 Status: Accepted & Closed.

20. Reinvest and Claim do not check for package.enabled. If that is intended just for new stakes,
nothing should be done, otherwise, checks should be added on both functions.

 Response: Not addressed. Intended behaviour.

 Status: Accepted & Closed.

7

 Sense4FIT Contract Audit 8

Test results

Initially audited source code version:

Afterwards, reviewed & audited that contains the fixes. PR #16

 be97236bcd0346014eec5ea51b2d09141f066b3a

After Fix & Feedback round:

https://github.com/S4F-IT/elrond-smart-contracts/pull/16
https://github.com/S4F-IT/elrond-smart-contracts/pull/16
https://github.com/S4F-IT/elrond-smart-contracts/commit/be97236bcd0346014eec5ea51b2d09141f066b3a
https://github.com/S4F-IT/elrond-smart-contracts/commit/be97236bcd0346014eec5ea51b2d09141f066b3a

