
Certification

Apr 1st, 2024 / v.0.2
Audited source code version:

f0238483e83a3039779da668dbb74778c090dd38

SMART CONTRACT AUDIT

SMART CONTRACT AUDITS

ESDT TOKENS LIQUID STAKING CONTRACT

OneDEX Contract Audit

Some sections are more important than others. The most critical areas are at the top, and the less critical sections are at
the bottom. The issues in these sections have been fixed or addressed and will show by the "Resolved" or "Unresolved"
tags. Each case is written so you can understand how serious it is, with an explanation of whether it is a risk of exploita-
tion or unexpected behavior.

These issues can have a dangerous effect on the ability of the contract to work correctly.

These issues significantly affect the ability of the contract to work correctly.

These issues affect the ability of the contract to operate correctly but do not hinder its behavior.

These issues have a minimal impact on the contract's ability to operate.

These issues do not impact the contract's ability to operate.

CRITICAL

HIGH

MEDIUM

LOW

INFORMATIONAL

Structure and Organization of the Document

1

OneDEX Contract Audit

Possible fix to research!

Remove the ‘#[endpoint]’ on the ‘unwrap’ function.

Possible fix to research!

Change the “&&” to “||” in “if current_timestamp > deadline && current_
timestamp < start_rewards”.

Description: Anyone can drain all the tokens inside the contract, the contract allows for external handling without
verifications.

Description: The contract tries to generate rewards even after the end date, which will result in error (negative value
after subtraction on BigUint rewards_reserve) that will prevent users from unstaking their tokens.

2

Issues

Fixed / CRITICAL1. Loss of funds

Fixed / CRITICAL2. Loss of funds

Fixed.

Response!

Fixed.

Response!

Accepted & Closed.

Status!

Accepted & Closed.

Status!

OneDEX Contract Audit

Possible fix to research!

Either move the setting of percentages in the init function, in case
it is meant to be used only once, or clear the map before setting new
entries again, in case it is meant to be reused in the future.

Description: Once set, the tax cut percentages cannot be changed. The function does clear old entries and cannot add
new ones since the sum of percentages together with the new entries will have to remain 100.

Fixed / MEDIUM4. Unchangeable tax cuts

Possible fix to research!

First thing to do in both topup and regress is to generate the aggregated
rewards. After this is done, the new rate can be calculated and
installed.

Description: When adding or removing tokens via top up or regress, the stakes must be rewarded with the rate that was
available before the change, in order to preserve the terms and meet their expectation. Updating the rate and then doing
the recalculation for the future might be unfair for some users.

Fixed / MEDIUM3. Unfair reward distribution

Fixed.

Response!

Fixed.

Response!

Accepted & Closed.

Status!

Accepted & Closed.

Status!

3

OneDEX Contract Audit 4

Possible fix to research!

Make public endpoints uncallable while inactive.

Description: Some of the public endpoints (for example topup and regress) are callable even if the contract state is
inactive.

Fixed / MEDIUM5. Contract state not respected

Possible fix to research!

Remove the check for pool state from ‘calculate_rewards_since_last_
allocation’ function.

Description: The two endpoints do not generate aggregated rewards while the pools are paused.	

Fixed / LOW6. Topup and Regress might not generate rewards

Fixed.

Response!

Fixed.

Response!

Accepted & Closed.

Status!

Accepted & Closed.

Status!

OneDEX Contract Audit 5

Verification Conditions

Admin functions are marked using 1

 #[only_owner]

User actions are guarded by active state checks on the contract and the pool.2

 require!(
 self.contract_state().get() == State::Active,
 ERR_CONTRACT_IS_INACTIVE
);

 require!(
 self.is_state_active(storage_cache.pool_state),
 ERR_POOL_IS_INACTIVE
);

Valid tokens are accepted on adding liquidity3

 require!(
 payment.token_identifier
 == self
 .stake_pool_rewards_token_identifier(&stake_pool_id)
 .get(),
 ERR_INVALID_TOKEN
);

Pool management functions can be accessed only by the owner4

 require!(
 self.is_stake_pool_owner(&stake_pool_id, &caller),
 ERR_INVALID_STAKE_POOL_OWNER
);

OneDEX Contract Audit

Suggestions (Optional)
1. Fix clippy warnings (for example there are plenty regarding double referencing).

2. Consider either moving all error messages into errors.rs or have them all inline for improving the code style.

6

Test results

Audited source code version
3c75e232645881b4da2c809cd9a665b9e42e727e

Second audited source code version
f0238483e83a3039779da668dbb74778c090dd38

