
Certification

Feb 9th, 2024 / v.0.2
Audited source code version:

2d1364e1fedf777130f89ca40de67668d202eb37

SMART CONTRACT AUDIT

SMART CONTRACT AUDITS

STAKING CONTRACT

OneDEX Contract Audit

Some sections are more important than others. The most critical areas are at the top, and the less
critical sections are at the bottom. The issues in these sections have been fixed or addressed and
will show by the "Resolved" or "Unresolved" tags. Each case is written so you can understand how
serious it is, with an explanation of whether it is a risk of exploitation or unexpected behavior.

These issues can have a dangerous effect on the ability of the contract to work correctly.

These issues significantly affect the ability of the contract to work correctly.

These issues affect the ability of the contract to operate correctly but do not hinder its behavior.

These issues have a minimal impact on the contract's ability to operate.

These issues do not impact the contract's ability to operate.

CRITICAL

HIGH

MEDIUM

LOW

INFORMATIONAL

1

Structure and Organization of the Document

OneDEX Contract Audit 2

Issues

Possible fix to research!

Either allow for multiple pools for a specific token and allow users to decide
which one to use, or add checks to ensure that the creator of the pool is also
the token owner (or admin).

Description: There can only be one pool for a specific token. Since there are no ownership checks
on the specific user that creates the pool for a token, one can frontrun the creation of the pool to
the disadvantage of the well intended creator.

Not Addressed / HIGH1. Frontrun Pool

Response!

Will leave it as is.

Response!

An only-owner function was introduced that can be used to clear old entries of
the ‘RewardInfo’ vector.

Status!

Not Addressed.

Status!

Accepted & Closed.

Possible fix to research!

The problem appears when the pool owner changes the APR very frequently. Add
guards such that there’s a cooldown between the last change in APR so the
contract will try to diminish the amounts of ‘RewardInfo’ created.

Description: When calculating the reward for a user, the smart contract does an iteration over all
the 'RewardInfo' structs. A new 'RewardInfo' struct is created each time the pool owner changes
the APR. Assuming that there are few changes in the APR, this should not be a problem, but if the
vector grows, user funds are at risk of being locked in the contract forever.

Fixed / HIGH2. Out of gas / read operation

OneDEX Contract Audit

Possible fix to research!

Implement the user set using an iterable method such that one can iterate all
the users in a controlled manner (for example using ‘offset’ and ‘limit’).

Description: In the view function 'getDaoMembers', the smart contract does an iteration over
all the users that are currently staking for a specific token. This can easily run out of gas / read
operations when the number of users reaches a reasonable value.

Fixed / HIGH3. Out of gas / read operation

Response!

The function was removed.

Response!

Fixed.

Status!

Accepted & Closed.

Status!

Accepted & Closed.

Possible fix to research!

Either make the parameter not-optional or add a functionality in case the value
is not provided (for example, doing a full withdrawal of the rewards left).

Description: The owner of a pool can withdraw the pool's rewards using 'withdrawRewards'
endpoint. The endpoint has an optional argument which represents the amount of the reward that
he wants to withdraw. If this value is not given (being optional), one might expect to withdraw the
full reward amount left but instead, the TX just fails (it tries to withdraw zero).

Fixed / MEDIUM4. Full Withdraw

3

OneDEX Contract Audit 4

Possible fix to research!

Either use the value where it was intended doing the development or remove it.

Description: When a pool is created, 'stake_token_decimals' is required, however it is not used
in the contract.

Fixed / LOW6. Unused decimals

Possible fix to research!

Send ‘amount / 2’ to one address and send ‘amount - amount / 2’ to the other in
order to avoid encountering leftovers.

Description: The contract splits the fee retained when creating a new pool into two. One half to
the 'treasury_address' and the other to 'burner_address'. However if the fee amount is an odd
number, a rounding error of '1' will remain in the contract.

Fixed / LOW5. Fees Leftover

Response!

Fixed.

Response!

Fixed.

Status!

Accepted & Closed.

Status!

Accepted & Closed.

OneDEX Contract Audit

Not Addressed / INFORMATIONAL8. Lack of tests

Not Addressed / INFORMATIONAL9. Lack of interaction scripts

Not Addressed / INFORMATIONAL10. Lack of documentation

5

Possible fix to research!

Rename it to ‘getPoolState’.

Description: There's a typo in the view name of the pool state storage. It is named 'getPoolte'.

Fixed / INFORMATIONAL7. Storage name

Response!

Fixed.

Status!

Accepted & Closed.

Status!

Not Addressed.

Status!

Not Addressed.

Status!

Not Addressed.

OneDEX Contract Audit

Verification Conditions

Only the owner of the streaming swap can call 'cancelStreamingSwap'.1

#[only_owner]
#[endpoint(setCreationCost)]
fn set_pool_creation_cost(

Valid payments are checked on input.3

require!(
 stake_token_id == self.pool_stake_token_id(pool_id).get(),
 “Invalid Stake token id”
);

Pool admin functions are guarded correctly.2

self.assert_pool_owner(pool_id);

self.assert_valid_pool_id(pool_id);
self.assert_unpaused();
self.assert_pool_unpaused(pool_id);

Actions are taken when the contract and the pool are not paused (and only on valid
pools).

4

6

OneDEX Contract Audit 7

Suggestions (Optional)
1. Update to latest framework version (best practice when deploying a new contract).

2. Write tests (Rust Testing Framework is recommended, documentation (at least a readme) and
interaction scripts.

3. Format the code using 'cargo fmt' and solve the warnings (check them using 'cargo clippy').

4. Construct the 'Pool' structure and store it inside a single storage instead of splitting pieces of
information between multiple storages.

Test results

There are no tests.

Audited source code version
ef45ea78ccaa59ab2a0932f92aedcfdbea3cd791

Second Audited source code version
2d1364e1fedf777130f89ca40de67668d202eb37

