
Certification

Feb 9th, 2024 / v.0.2
Audited source code version:

90792711236392c32674751321a73f1c930ea339

SMART CONTRACT AUDIT

SMART CONTRACT AUDITS

STREAMING ORDERS CONTRACT

OneDEX Contract Audit

Some sections are more important than others. The most critical areas are at the top, and the less
critical sections are at the bottom. The issues in these sections have been fixed or addressed and
will show by the "Resolved" or "Unresolved" tags. Each case is written so you can understand how
serious it is, with an explanation of whether it is a risk of exploitation or unexpected behavior.

These issues can have a dangerous effect on the ability of the contract to work correctly.

These issues significantly affect the ability of the contract to work correctly.

These issues affect the ability of the contract to operate correctly but do not hinder its behavior.

These issues have a minimal impact on the contract's ability to operate.

These issues do not impact the contract's ability to operate.

CRITICAL

HIGH

MEDIUM

LOW

INFORMATIONAL

1

Structure and Organization of the Document

OneDEX Contract Audit 2

Issues

Possible fix to research!

Uncomment the code in the init function.

Possible fix to research!

Add boundaries checks. Greater or equal to 0 and lesser or equal to ‘MAX_PERCENT’
should do it.

Description: There are storages that are not set when the init is called (the code is commented)
and the contract depends on them.

Description: There are no boundaries checks for the 'fee_percentage' when setting the value (at
the moment - the set is commented out, but it does not contain the boundaries check)

Fixed / LOW1. Commented code

Fixed / LOW2. Sanity check on input

Response!

Fixed.

Response!

Fixed.

Status!

Accepted & Closed.

Status!

Accepted & Closed.

OneDEX Contract Audit

Possible fix to research!

Add a check in order to exit early in case the two values differ.

Description: There is no check if the payment matches the first token in 'path' in
'createStreamingSwap' endpoint.

Unresolved / LOW4. Sanity check on input

Possible fix to research!

Make sure no SFT/NFT touches this contract and exit early in case it does by
adding a ‘require(_token_nonce == 0, “payment nonce should be 0”)’ after the
payment is read.

Description: There is no check if '_token_nonce' is zero when the payment is received in
'createStreamingSwap'.

Fixed / LOW3. Sanity check on input

Response!

Fixed.

Response!

Fixed.

Status!

Accepted & Closed.

Status!

The introduced function that does the checking, ‘check_path’, has a bug, in case
the input is ‘EGLD’ the line ‘(token_in.clone().unwrap_esdt()’ will crash.

3

OneDEX Contract Audit 4

Possible fix to research!

Add a check to make sure the ‘token_in’ differs from ‘token_out’. However, the flow
is meant to be allowed, other checks must be introduced or enforced.

Description: There is no check if the first token in path differs from the last (trying to swap one
token for the same one - after several hops). This would be allowed as a nice feature but since the
contract relies on checking balances while doing external calls, having the same 'token_in' and
'token_out' may break logic. For example in 'let final_balance = token_balance_out - token_
balance_in;', where the contract assumes that the balance after the external call has to be greater
or equal than the balance before the call - if the 'token_in' and 'token_out' are the same, the
assumption may not be valid (one can pay 10A and receive back 9A after the external 'swap' call).

Fixed / LOW5. Sanity check on input

Response!

Fixed.

Response!

Fixed.

Status!

Accepted & Closed.

Status!

Accepted & Closed.

Possible fix to research!

Require ‘token_out’ in ‘path’ to be ‘WEGLD’ if unwrapping is required. Otherwise
(if unwrapping is required but token_out is not ‘WEGLD’) it wouldn’t make sense.

Description: There is no check on the 'token_out' in the 'manage_swap' function. The contract
checks if unwrapping is required, and if so - sets the 'token_out' value equal to 'EGLD'.

Fixed / LOW6. Sanity check on input

OneDEX Contract Audit 5

Possible fix to research!

All swap contracts manage ESDT tokens and not EGLD directly. All ‘stream_swap.
token_in’, ‘token_in’ and ‘swap_token_in’ should have the same value, since they
represent the same information ‘the value of the received payment’. There should
be checks that enforce this constraint and disallow for differences between them.
Even if, theoretically EGLD and wEGLD are the same, practically they are not, one
is the native token of the blockchain and the other is an ESDT and they cannot be
used interchangeably.

Description: In 'streamSwap' endpoint, there are two places where the 'stream_swap.token_in'
and 'token_in' are compared and used to determine the value of 'swap_token_in'. Besides
ambiguity, the 'swap_token_in' can, in the end, have a different value from that of the payment,
when the creation of the streaming swap was done.

Fixed / LOW7. EGLD & wEGLD mangling

Response!

Fixed.

Status!

Accepted & Closed.

Not Addressed / INFORMATIONAL8. Lack of tests

Not Addressed / INFORMATIONAL9. Lack of interaction scripts

Not Addressed / INFORMATIONAL10. Lack of documentation

Status!

Not Addressed.

Status!

Not Addressed.

Status!

Not Addressed.

OneDEX Contract Audit

Verification Conditions

Only the owner of the streaming swap can call 'cancelStreamingSwap'.1

require!(my_streaming_swap.user_address == self.blockchain().get_caller(),
“Streaming Swap does not belong to you”);

Only the pre-configured processor can call 'streamSwap' endpoint.4

require!(self.processor().get() == self.blockchain().get_caller(), “You are not
allowed”);

Only the owner can call 'removeStreamingSwap'.3

#[only_owner]
#[endpoint(removeStreamingSwap)]

Only the owner can update the contract configuration state (active/inactive, collectors
of fees).

2

6

OneDEX Contract Audit 7

Suggestions (Optional)
1. Update to latest framework version (best practice when deploying a new contract).

2. Write tests (Rust Testing Framework is recommended, documentation (at least a readme) and
interaction scripts.

3. Remove unnecessary comments (for example there are functions that are commented entirely).

 Response: Fixed.

 Status: Accepted & Closed.

4. Format the code using 'cargo fmt' and solve the warnings (check them using 'cargo clippy').

5. Add '#[view]' on top of storages for better transparency / visibility of the configured values.

Test results

There are no tests.

Audited source code version
B909a123817370b4b57c4061157b77b376f6a783

Second audited source code version
90792711236392c32674751321a73f1c930ea339

