
Certification

Jan 24th, 2024 / v.0.2
Audited source code version:

b419a336cec96c7b638502cb29aa139ede661329

SMART CONTRACT AUDIT

SMART CONTRACT AUDITS

STABLE SWAP CONTRACT

OneDEX Contract Audit

Some sections are more important than others. The most critical areas are at the top, and the less
critical sections are at the bottom. The issues in these sections have been fixed or addressed and
will show by the "Resolved" or "Unresolved" tags. Each case is written so you can understand how
serious it is, with an explanation of whether it is a risk of exploitation or unexpected behavior.

These issues can have a dangerous effect on the ability of the contract to work correctly.

These issues significantly affect the ability of the contract to work correctly.

These issues affect the ability of the contract to operate correctly but do not hinder its behavior.

These issues have a minimal impact on the contract's ability to operate.

These issues do not impact the contract's ability to operate.

CRITICAL

HIGH

MEDIUM

LOW

INFORMATIONAL

1

Structure and Organization of the Document

OneDEX Contract Audit

Possible fix to research!

Even if the team is designing the frontend, another frontend made by some other
team that uses the same underlying smart contract can make wrong assumptions or
simply a mistake that would end up in lost funds for the user. In conclusion,
in order to protect the user funds, the needs for avoiding this case should be
implemented directly in the smart contract.

Description: Let's imagine the scenario where the SC is deployed with only two stable tokens,
A and B, and is currently holding 10 tokens A (10A) and 10 tokens B (10B). The user, unaware
of the pool reserves, wants to acquire 10B. An error occurs in the frontend (either made by the
same team or an external one) calculus and the user is asked to pay 20A initially. The user seems
confused at first, since the tokens are both stablecoins. The MultiversX user, used to the flow of
xExchange, accepts and signs the transaction. He does this because he expects the contract to
make 'the right thing' and give him his 10B and 'the change' (~10A), as this is what xExchange
smart contracts would do (Link). Instead, the smart contract 'eats' all the A tokens given as input
and returns the 10B. This is the case even if the user (by habit or by mistake) sends 10 million A
initially.

2

Issues

Not applicable / CRITICAL1. Loss of funds

Response!

Not applicable. Swaps are always with fixed input. xExchange example seems to
be for fixed output swaps only, where “the change” is returned (ie. user sent
amount_in + max accepted slippage)

Status!

Accepted & Closed. We recommend renaming the ‘swap’ endpoint to ‘swapFixedInput’ or
something similar in order to induce the idea that no ‘change’ will be given back.

https://github.com/multiversx/mx-exchange-sc/blob/main/dex/pair/src/contexts/output_builder.rs#L146

OneDEX Contract Audit

Possible fix to research!

Add a check for the ‘paused’ state of the contract in the ‘removeLiqudity’
endpoints and views.

Description: It is not clear if the contract may be upgraded in the future. In case it is, let's imagine
the scenario where the contract upgrade goes wrong. Users that want to add liquidity or swap
during this time will be protected, while the user that panics and tries to remove liquidity will not.
The check for whether the contract is paused is not there for 'removeLiquidity' endpoints and
views.

Not applicable / HIGH2. Loss of funds

Response!

Not applicable. Users must always be able to remove their liquidity. That’s why
pausing the smart contract does not prevent liquidity removal. The SC is not
supposed to be upgraded.

Status!

 Accepted & Closed

Response!

Not applicable. It will no longer be possible to change de list of tokens ->
amplification factor can remain static. The SC is not supposed to be upgraded.
The new upgrade function will be implemented, preventing SC owner to change the
amplification factor and list of tokens, as it would be a critical change in the
purpose of the contract. We would advise the pool owner to create a new pool.

Status!

 Accepted & Closed

Possible fix to research!

Make it dynamic, depending on the number of stablecoins. This way, the rates
will be left unchanged at any time, even if more instances of stablecoins are
added or removed from the contract.

Description: It is not clear whether the number of tokens in a deployed contract will change (the
owner would add or remove tokens). However, if this happens, the 'amp_factor' might be left
unchanged, since it is independent of the number of tokens, and this might lead to different
(slightly, but still different) swap rates.

Not applicable / MEDIUM3. Static Amplification Factor

3

OneDEX Contract Audit 4

Possible fix to research!

Add checks with min / max values allowed or at least the sanity zero check.

Description: The contract does not check the value given by the owner when configuring the
amplification factor.

Fixed / LOW5. Unchecked bounds for amplification factor

Possible fix to research!

When setting the number of tokens, add a check for its value (must be 2 or
higher).

Description: The contract assumes in multiple occurrences that the number of tokens is strictly
greater than 1, while there's no check for it.

Fixed / LOW4. Division by zero

Response!

Fixed.

Response!

Fixed.

Status!

 Accepted & Closed

Status!

 Accepted & Closed

OneDEX Contract Audit

Possible fix to research!

Add checks in order to make sure that the given token id vector has only unique
values.

Description: The contract does not check for duplicates in the vector containing 'tokenIdentifiers'
given by the owner. Configuring the same token twice by mistake will break the contract logic.

Fixed / LOW6. Identical token identifiers when setting stablecoins

Response!

Fixed.

Response!

Fixed.

Status!

 Accepted & Closed

Status!

 Accepted & Closed

Possible fix to research!

Make a constant for the number (since it can be represented on 64 bits, for
example: ‘const ONE_LP_TOKEN: u64 = 1_000_000_000_000_000_000u64’ and use
directly ‘BigUint::from(ONE_LP_TOKEN)’ in order to lower gas consumption.

Description: Calculating 'BigUint::from(10u32).pow(LP_TOKEN_DECIMALS))' each time
(slightly) increases the cost unnecessary.

Fixed / LOW7. Redundant calculus

5

OneDEX Contract Audit 6

Possible fix to research!

Add checks for zero values in order to exit early if a user expects ‘zero’
amount in return for his actions in all user endpoints and views (add liqudity,
swap, remove liqudity).

Description: The contract does not check the 'min' values received on the user endpoints. In case
the user sends 'zero' as 'min' and the calculated 'out' amount is min, all the checks pass and the
send function will fail.

Fixed / INFORMATIONAL9. Missing zero checks on user input

Possible fix to research!

Solve the TODO, maybe taking the Curve’s code as reference / starting point.

Description: The code contains a TODO. Checking the Curve code (Link), the current version of
the code seems to be correct but it is the developer's decision.

Fixed / LOW8. Unsolved TODO in the code

Response!

Fixed.

Response!

Fixed.

Status!

 Accepted & Closed

Status!

 Accepted & Closed

https://github.com/curvefi/stableswap-ng/blob/main/contracts/main/CurveStableSwapNG.vy#L640

OneDEX Contract Audit

Possible fix to research!

Add checks in order to exit early if a user wants to make actions when the
contract is not fully configured.

Description: The contract does not check if the LP token is issued and roles were set in all user
endpoints and views.

Fixed / INFORMATIONAL10. Missing basic checks on user endpoint

Response!

Fixed.

Response!

Not applicable. Won’t do. Contract owner can pause the contract for various
reasons (end-of-life, migration, ...). Users are always able to withdraw their

Status!

 Accepted & Closed

Status!

 Accepted & Closed

Possible fix to research!

There’s no fix, it’s just the way the SC is designed and the users must be aware
of it.

Description: The smart contract has an admin, the owner, who can, at any time, pause the
contract (which disallows users to add liquidity and swap). In most cases, it is not a problem,
since the users in this ecosystem tend to approve of this technique trusting the owner of the smart
contract. However, this might be a problem in case, for example, the owner's private key gets
compromised).

Not applicable / INFORMATIONAL11. The smart contract has an admin

7

OneDEX Contract Audit 8

Verification Conditions

Actions are taken when the contract is not paused (except for the ones
indicated in the Issues section).

4

self.require_not_paused();

Owner functions are marked using either 'only_owner' macro attribute.1

#[only_owner]
#[endpoint]
fn pause(&self) {
 self.do_pause();
}

The minimum 'output' value is respected.2

require!(amount_out >= min_amount, “Max slippage exceeded”);

Valid payments are checked on input.3

require!(nb_valid_payments == payments.len(), “Invalid payment token”);

OneDEX Contract Audit

1. Tests written in rust are easier to extend and more comprehensible. Might be a good idea to port the
mandos tests now because they might grow in the future and more 'depth' will be accumulated around
them (harder to follow, harder to comprehend, harder to write new tests, etc).

2. Annotations. There's an unwritten rule that annotations order is: access annotations, payable
annotations, and endpoint annotations. Also, if the name of the function name is identical with the
name given by the endpoint annotation, the last should be left unspecified.

3. Remove the 'An empty contract. [...]' comment at the beginning of the contract.

 Response: Fixed.

 Status: Accepted & Closed.

4. Remove the 'issueLpToken' and 'enableMintBurn' function and do those actions outside of the
contract. Since they are done only once, they grow the contract in size and hence any interaction with
the contract will be a little more expensive in gas.

5. Edit the error message 'i = j' and make it more comprehensible. Might not be intuitive what the error
means at first.

 Response: Fixed.

 Status: Accepted & Closed.

6. When finding a token in 'get_token_index', add a 'break' in order to lower gas consumption.

 Response: Fixed.

 Status: Accepted & Closed.

7. Add '#[view([...])]' on each storage. Might be useful later to be able to read the values.

 Response: Fixed.

 Status: Accepted & Closed.

8. Avoid 'double iterating' by hand, using an iterator and an index 'i' incremented manually and use
'enumerate()' instead.

 Response: Fixed.

 Status: Accepted & Closed.

9

Suggestions (Optional)

OneDEX Contract Audit

9. Avoid comparing references to references when it is not needed. For example this:
'require!(&amount_out >= &min_amount, "Max slippage exceeded");' can be written more simply:
'require!(amount_out >= min_amount, "Max slippage exceeded");'.

 Response: Fixed.

 Status: Accepted & Closed.

10. Avoid initialising a new variable with a value and returning it immediately. Simply just return the
value directly.

 Response: Fixed.

 Status: Accepted & Closed.

11. Avoid using 'return' keyword where it is redundant (check 'clippy' output).

 Response: Fixed.

 Status: Accepted & Closed.

12. Rewrite 'const FEE_DENOMINATOR: u64 = 1_000000u64;' to 'const FEE_DENOMINATOR:
u64 = 1_000_000u64';

 Response: Fixed.

 Status: Accepted & Closed.

13. In order to make 'PairStatus' deserialization more readable, you might want to make a custom
method 'to_managed_buffer_array' that converts the object into an array of managed buffers.

14. Try having few to none hardcoded values, for example in 'for i in 0u64..=6u64'.

15. Not long ago, MultiversX team has added an update in which ‘ init’ is called only at smart contract
deploy, so there's no need for all the 'if_empty' check. You can safely assume that the storage is
all empty. In order to upgrade, you will need an 'upgrade' function. Is an unwritten rule that every
upgradable contract has an 'upgrade function even if the content is empty, in order to remember
that the code executed when upgrading the SC must be placed inside 'upgrade and not inside 'init'
as it was until one of the latest network upgrades. Check the docs for more info about the 'upgrade
function.

 Response: Fixed.

 Status: Accepted & Closed.

10

OneDEX Contract Audit 11

Test results

Audited source code version
6eb706bb7a1a989f2d6bc791692c6c70cdf89c7f

OneDEX Contract Audit

Hash: b419a336cec96c7b638502cb29aa139ede661329

* The audited source code version is the hash of the last commit of the received code repo.

After the second review:

12

